Teil I: Stoffgebiete der Mittelstufe

Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

$$(a-b)^2 = a^2 - 2ab + b^2$$
 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

$$(a+b)\cdot(a-b) = a^2 - b^2$$
 $a^3 - b^3 = (a-b)\cdot(a^2 + ab + b^2)$

Ab solut be trag

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Lösungsformel für die quadratische Gleichung $ax^2 + bx + c = 0$

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Potenzen und Wurzeln

$$a^0 = 1 a^1 = a$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad \qquad a^{\frac{n}{m}} = \sqrt[m]{a^n} \qquad \qquad a^{-x} = \frac{1}{a^x} \qquad \qquad \left(a^x\right)^z = a^{x \cdot z}$$

$$a^x \cdot a^z = a^{x+z}$$
 $\frac{a^x}{a^z} = a^{x-z}$ $a^x \cdot b^x = (ab)^x$ $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$

$$\sqrt{a} \cdot \sqrt{a} = a$$
 $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$

Geradengleichung

$$f(x) = mx + t$$
; Punkt-Steigungsform: $f(x) = m \cdot (x - x_0) + y_0$

Parabelgleichung

$$f(x) = ax^2 + bx + c$$
 (allgemeine Form)

$$f(x) = a \cdot (x - x_s)^2 + y_s$$
 (Scheitelform)

$$f(x) = a \cdot (x - x_1) \cdot (x - x_2)$$
 (Linearfaktorform)

Logarithmen

$$\log_{b}(u v) = \log_{b}(u) + \log_{b}(v) \qquad \qquad \log_{b}(\frac{u}{v}) = \log_{b}(u) - \log_{b}(v)$$

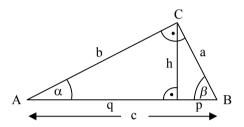
$$\log_{b}(u^{z}) = z \cdot \log_{b}(u) \qquad \qquad \log_{c}(a) = \frac{\log_{b}(a)}{\log_{b}(c)}$$

Rechtwinkliges Dreieck

Pythagoras: $a^2 + b^2 = c^2$

Höhensatz: $h^2 = p$

Kathetensatz: $a^2 = cp$; $b^2 = cq$



Sinus und Kosinus

$$\sin \alpha = \frac{a}{c}$$
 $\cos \alpha = \frac{b}{c}$

$$\sin(-\varphi) = -\sin\varphi$$
 $\sin(90^{\circ} - \varphi) = \cos\varphi$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{a}{b}$$

$$(\sin \alpha)^2 + (\cos \alpha)^2 = 1$$

$$\cos(-\varphi) = \cos\varphi$$
 $\cos(90^{\circ} - \varphi) = \sin\varphi$

Flächengeometrie

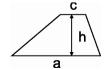
Allgemeines Dreieck:
$$A = \frac{1}{2}gh$$

Kreis:
$$U = 2r \pi$$
;
 $A = r^2 \pi$

Gleichseitiges Dreieck:
$$A = \frac{a^2}{4}\sqrt{3}$$
;

$$h = \frac{a}{2}\sqrt{3}$$

Trapez:
$$A = \frac{a+c}{2}h$$



Raumgeometrie

Prisma: V = Gh

Pyramide: $V = \frac{1}{3}Gh$

gerader Kreiszvlinder:

$$V = r^2 \pi h;$$

$$M = 2r \pi h$$

gerader Kreiskegel:

iskegel:

$$V = \frac{1}{3}r^{2}\pi h;$$

$$M = r\pi m$$

$$M = 2r\pi h$$

Kugel:
$$V = \frac{4}{3}r^3\pi$$
;
 $O = 4r^2\pi$

V: Volumen

M: Mantelfläche

O: Oberfläche G: Grundfläche

Teil II: Analysis

Symmetrie bezüglich des Koordinatensystems

f(-x) = f(x) für alle $x \in D \iff G_s$ ist achsensymmetrisch zur y-Achse (f heißt dann gerade Funktion)

f(-x) = -f(x) für alle $x \in D \iff G_x$ ist punktsymmetrisch zum Ursprung (f heißt dann *ungerade Funktion*)

Grenzwerte

$$\lim_{x\to +\infty}\frac{x^r}{e^x}=0\;\;;\qquad \lim_{x\to +\infty}\frac{\ln x}{x^r}=0\;;\qquad \lim_{x\to 0}\Big(x^r\cdot \ln x\Big)=0\qquad \text{(jeweils } r>0\text{)}$$

Definition der Ableitung

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

falls der Grenzwert existiert und endlich ist.

$$f'(x) = y' = \frac{df(x)}{dx} = \frac{dy}{dx};$$
 $\frac{ds(t)}{dt} = \dot{s}(t)$

Ableitung der Grundfunktionen

$$(\mathbf{x}^{\mathbf{r}})^{\prime} = \mathbf{r} \ \mathbf{x}^{\mathbf{r}-1}$$

$$(x^{r})^{/} = r x^{r-1}$$
 $(\frac{1}{x^{r}})^{/} = -\frac{r}{x^{r+1}}$

$$(e^x)^{/}=e^x$$

$$(e^x)' = e^x$$
 $(\ln x)' = \frac{1}{x}$

Ableitungsregeln

Summenregel:

$$f(x) = u(x) + v(x) \implies f'(x) = u'(x) + v'(x)$$

Faktorregel:

$$f(x) = c \cdot u(x)$$
 $\Rightarrow f'(x) = c \cdot u'(x)$

$$\Rightarrow f'(x) = c \cdot u'(x)$$

Produktregel:

$$f(x) = u(x) \cdot v(x)$$

$$f(x) = u(x) \cdot v(x)$$
 \Rightarrow $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Ouotientenregel:

$$f(x) = \frac{u(x)}{v(x)}$$

$$f(x) = \frac{u(x)}{v(x)} \qquad \Rightarrow f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$$

Kettenregel:

$$f(x) = u(v(x))$$

$$\Rightarrow$$
 f'(x) = u'(v(x))·v'(x)

L'Hospitalsche Regeln

- Gilt z(a) = n(a) = 0 und existiert $\lim_{x \to a} \frac{z'(x)}{n'(x)}$, so gilt $\lim_{x \to a} \frac{z(x)}{n(x)} = \lim_{x \to a} \frac{z'(x)}{n'(x)}$.
- Gilt $|z(x)| \to \infty$ und $|n(x)| \to \infty$ für $x \to a$ und existiert $\lim_{x \to a} \frac{z'(x)}{n'(x)}$,

so gilt
$$\lim_{x \to a} \frac{z(x)}{n(x)} = \lim_{x \to a} \frac{z'(x)}{n'(x)}$$
.

• Beide Regeln gelten in ähnlicher Weise auch für $|x| \to \infty$ (anstelle von $x \to a$).

Anwendungen der Differenzialrechnung

- Gleichung der Tangente im Punkt P $(x_0 | f(x_0))$: $y = f'(x_0) \cdot (x x_0) + f(x_0)$
- Monotoniekriterium:

f'(x) < 0 im Intervall I \Rightarrow f fällt streng monoton in I.

f'(x) > 0 im Intervall I \Rightarrow f steigt streng monoton in I.

- Art von Extremwerten (mithilfe der zweiten Ableitung): $f'(x_0) = 0$ und $f''(x_0) > 0 \Rightarrow f$ hat an der Stelle x_0 ein relatives Minimum. $f'(x_0) = 0$ und $f''(x_0) < 0 \Rightarrow f$ hat an der Stelle x_0 ein relatives Maximum.
- Graphenkrümmung:
 f["](x) < 0 im Intervall I ⇒ G_f ist in I rechtsgekrümmt.
 f["](x) > 0 im Intervall I ⇒ G_f ist in I linksgekrümmt.
- Wendepunkt:
 Ist f''(x₀) = 0 und wechselt f'' an der Stelle x₀ das Vorzeichen,
 so hat G_f an der Stelle x₀ einen Wendepunkt.
- Terrassenpunkt: Ist $f'(x_0) = 0$ und $f''(x_0) = 0$ und wechselt f'' an der Stelle x_0 das Vorzeichen, so hat G_{ϵ} an der Stelle x_0 einen Terrassenpunkt.

Berechnung bestimmter Integrale

 $\int\limits_{a}^{b} f(x) dx = F(b) - F(a) = \left[F(x) \right]_{a}^{b}, \text{ wobei F eine Stammfunktion von f ist.}$

Wichtige unbestimmte Integrale

$$\begin{split} \int x^r dx &= \frac{x^{r+1}}{r+1} + C \quad (r \neq -1) \\ \int e^x dx &= e^x + C \\ \int \int \ln x \, dx &= -x + x \ln x + C \\ \int \frac{f'(x)}{f(x)} dx &= \ln \left| f(x) \right| + C \\ \int \int f'(x) \cdot e^{f(x)} dx &= e^{f(x)} + C \end{split}$$

 $\int f(ax+b) dx = \frac{1}{a}F(ax+b)+C$, wobei F Stammfunktion von f ist.

Uneigentliche Integrale: $\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$

Teil III: Wahrscheinlichkeitsrechnung

Gesetze der Mengenalgebra: $\overline{A} = \Omega \setminus A;$ $A \cup \overline{A} = \Omega;$ $A \cap \overline{A} = \{ \};$

$$\overline{\overline{A}} = A$$
; $A \setminus B = A \cap \overline{B}$

Gesetze von De Morgan: $\overline{A \cap B} = \overline{A} \cup \overline{B}$; $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Unvereinbarkeit: $A \cap B = \{ \}$

Ereigniswahrscheinlichkeiten: $P(\{ \}) = 0$; $P(\Omega) = 1$; $P(\overline{A}) = 1 - P(A)$

Satz von Sylvester: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Unabhängigkeit von zwei Ereignissen: $P(A \cap B) = P(A) \cdot P(B)$

Fakultät: $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$

Anzahl der Möglichkeiten, n unterscheidbare Elemente in einer Reihe anzuordnen.

Binomialkoeffizient: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot ... \cdot (n-k+1)}{k!}$

Anzahl der Möglichkeiten, aus einer Menge mit n Elementen Teilmengen mit k Elementen zu bilden.

Laplace-Experiment: Alle Elementarereignisse des zugehörigen Ergebnisraumes sind gleich wahrscheinlich.

Es gilt dann: $P(A) = \frac{|A|}{|\Omega|}$

Zufallsgrößen – Erwartungswert, Varianz, Standardabweichung

Die Zufallsgröße X nehme die Werte $x_1, x_2, ..., x_n$ jeweils mit den Wahrscheinlichkeiten $p_1, p_2, ..., p_n$ an. Dann gilt:

- **Erwartungswert:** $\mu = E(X) = \sum_{i=1}^{n} x_i \cdot p_i = x_1 \cdot p_1 + x_2 \cdot p_2 + \dots + x_n \cdot p_n$
- Varianz: $Var(X) = \sum_{i=1}^{n} (x_i \mu)^2 \cdot p_i$ = $(x_1 - \mu)^2 \cdot p_1 + (x_2 - \mu)^2 \cdot p_2 + ... + (x_n - \mu)^2 \cdot p_r$

Verschiebungsregel: $Var(X) = E(X^2) - \mu^2$

• Standardabweichung: $\sigma = \sqrt{Var(X)}$

Binomialverteilung

Die Zufallsgröße X beschreibe die Anzahl der Treffer in einer Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

Dann heißt die zugehörige Wahrscheinlichkeitsverteilung "*Binomialverteilung*". X heißt binomialverteilt, genauer B(n; p)-verteilt.

Ist die Zufallsgröße X binomialverteilt nach B(n; p), so gilt:

$$P(X = k) = B(n; p; k) = {n \choose k} \cdot p^k \cdot (1-p)^{n-k}$$
 für $k = 0, 1, ..., n$

mit Erwartungswert $E(X) = n \cdot p$ und Varianz $Var(X) = n \cdot p \cdot (1-p)$

Hypothesentest

Beim Testen der Nullhypothese H₀ im Signifikanztest können zwei Fehler auftreten:

Fehler 1. Art: H_0 wird abgelehnt, obwohl sie wahr ist.

Fehler 2. Art: H₀ wird angenommen, obwohl sie falsch ist.

Als "*Signifikanzniveau*" α des Tests bezeichnet man die größtmögliche noch akzeptierte Wahrscheinlichkeit des Fehlers 1. Art.

Teil IV: Lineare Algebra und Analytische Geometrie

Multiplikation einer Matrix mit einem Vektor

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_{11} \cdot v_1 + a_{12} \cdot v_2 + a_{13} \cdot v_3 \\ a_{21} \cdot v_1 + a_{22} \cdot v_2 + a_{23} \cdot v_3 \\ a_{31} \cdot v_1 + a_{32} \cdot v_2 + a_{33} \cdot v_3 \end{pmatrix}$$

Leontief – Modell:

$$(E-A) \cdot \overrightarrow{x} = \overrightarrow{y}$$

Lineare Unabhängigkeit

Drei Vektoren \vec{a} , \vec{b} und $\vec{c} \in \mathbb{R}^3$ sind genau dann linear unabhängig, wenn die Gleichung $\lambda \vec{a} + \mu \vec{b} + \nu \vec{c} = \vec{0}$ nur mit $\lambda = \mu = \nu = 0$ lösbar ist.

Gerade im \mathbb{R}^3

- Punkt-Richtungsform: $g: \vec{x} = \vec{a} + \lambda \cdot \vec{u}$
- Zwei-Punkte-Form $g: \vec{x} = \vec{a} + \lambda \cdot (\vec{b} \vec{a})$

Ebene im \mathbb{R}^3

Parameterformen

- Punkt-Richtungsform: $E: \vec{x} = \vec{a} + \lambda \cdot \vec{u} + \mu \cdot \vec{v}$
- Drei-Punkte-Form: E: $\vec{x} = \vec{a} + \lambda \cdot (\vec{b} \vec{a}) + \mu \cdot (\vec{c} \vec{a})$

Parameterfreie Formen

- Koordinatenform: E: $ax_1 + bx_2 + cx_3 + d = 0$
- Achsenabschnittsform: E: $\frac{x_1}{s} + \frac{x_2}{t} + \frac{x_3}{u} = 1$

Festlegung durch die Achsenschnittpunkte

S(s|0|0), T(0|t|0) und U(0|0|u)